新疆生产建设兵团科技进步奖公示内容

(2024年度)

项目名称	工业烟气 CO ₂ 捕集利用理论创新、装备研制及产业化应用
主要完成人	李兆敏,李宾飞,李雪琴,张超,王海涛,李松岩,邵国林,王彦军,李秉霖,刘小波,李豪杰,王军,王玉军,李大勇,孟巧玲
主要完成单位	石河子大学、中国石油大学(华东)、新疆锦疆化工股份有限公司、山东科瑞油气装备有限公司、中石化新疆新春石油开发有限责任公司、山东瑞恒兴域石油技术开发有限公司新疆分公司、胜利油田石油开发中心有限责任公司、中国石油化工股份有限公司石油勘探开发研究院
提名单位	石河子大学
提名意见	我单位认真审阅了该项目推荐书及其附件材料,确认全部材料真实有效,相关栏目均符合新疆生产建设兵团科技进步奖的申报要求。 "碳达峰、碳中和"是国家重大战略目标,该项目面向兵团及国家重大需求,围绕工业烟气 CO2 捕集利用理论创新、装备研制及产业化应用开展研究,开发了高效新型 CO2 捕集材料,在稠油注蒸汽低碳高效开发理论方面形成了创新与突破,实现了"少用汽、降能耗、碳回收",专家鉴定"整体 达到国际领先水平 ":发明了烟道气捕集处理一体化注入设备建成了工业化生产线;研发了高浓度 CO2 工业捕集工艺,建成 兵团首个 2×10 万吨/年 CO2 捕集示范工程,为兵团新型工业化发展、节能减排和碳汇创收提供强有力的支撑。本项目授权中国发明专利 34 件,美国、欧洲发明专利 5 件,发表学术论文 57 篇,出版专著 3 部,制订行业标准 1 项,指导学生获"挑战杯"黑科技全国特等奖。项目研究内容科学、合理,研究思路清晰、周密,组织管理规范、严格,所形成的研究成果具有重要的理论价值,引领了国内外 CCUS 技术研究的发展方向,为兵团重点领域科技创新能力培养,创新驱动发展战略的实施提供了有力的支撑。
提名等级	兵团科技进步奖一等奖
	而 日 約 人

项目简介

- "碳达峰、碳中和"是国家战略目标,该项目面向兵团及国家重大需求,在工业烟气 CO_2 捕集利用理论方法、装备研制等方面实现了创新与突破,实现了产业化,创新点如下:
- (1) 开发了"识别-捕获-传递"可控构筑的高效新型 CO_2 捕集材料,阐明了溶解、扩散、反应和筛分的四重选择机制强化 CO_2 捕集理论与方法, CO_2 渗透系数和分离因子分别提升 102% 72%,为碳捕集产业化应用奠定理论基础。
- (2)揭示了稠油开采蒸汽-烟气"接替降黏、增能助排"协同增效机制,发明了基于稠油开采降黏、增能需求的烟道气组分动态优化方法,为不同浓度 CO₂ 采油利用奠定理论基础,典型区块采收率提高 5.4%。
- (3) 创新混合气体露点监测与腐蚀控制技术,研发了可移动、撬装式烟道气捕集处理一体化注入设备,锅炉能耗降低 1.5%-2.5%; 建成设备工业化生产线,为油田锅炉烟气资源化利用提供了关键装备。

(4) 基于降低能耗和提高液化率双目标原则,优化高浓度工业 CO_2 捕集参数,研发了 CO_2 捕集工艺,在兵团工业体系中首次建成 2×10 万吨/年 CO_2 捕集示范工程。

项目授权中国发明专利 34 件,美国、欧洲发明专利 5 件,发表学术论文 57 篇,出版专著 3 部,制订行业标准 1 项,指导学生获"挑战杯"黑科技全国特等奖。团队在"稠油、烟道气、蒸汽、泡沫"领域学术影响力全球排名第一。

主要知识产权和标准规范等目录(不超过8项)

序 号	类别	知识产权(标准)具体名称及 证书编号(标准批准发布部门)	国家 (地区)	授权号(标准编号)及 授权(标准发布)日期	权利人 (标准起草单位)	发明人 (标准起草人)	法律状态
1	发明 专利	一种念珠状材料填充的混合基质膜 的制备方法和应用	中国	ZL202110526253.2	石河子大学	李雪琴,李珑,黄路,吕侠, 王江南,梁朝	有效
2	发明 专利	一种基于碱性功能性离子液体共混膜的制备方法和应用	干囲	ZL201810496821.7	石河子大学	李雪琴,张旺龙,张海洋,保守玮,丁思远,李洋洋,石莎	有效
3	发明专利	一种基于烟道气组分优化蒸汽驱的采油方法	中国	ZL202210258537.2	中国石油大学(华东)	李博良,李宾飞,李兆敏,李松岩,张超,朱迪,张梦 园	有效
4	发明 专利	热采过程的注气方法	中国	ZL201910579508.4	中国石油化工股份有限 公司石油勘探开发研究 院	王海涛,何应付,骆铭,伦 增珉,吕成远,赵清民,赵 淑霞,赵春鹏,郎东江,周 霞	有效
5	发明 专利	一种基于 CO ₂ 辅助 SAGD 开采超稠油 油藏的 CCUS 系统及方法	中国	ZL201310175405.4	中国石油大学(华东)	李兆敏,张超,鹿腾,薛兴 昌,衣怀峰,马春元,杨肖 曦	有效
6	发明 专利	一种基于水力引射技术的蒸汽、烟气 辅助稠油开采系统及工艺方法	中国	ZL201510227342.1	中国石油大学(华东)	李兆敏,张超,杨肖曦,李威,鹿腾,王壮壮	有效

主要知识产权和标准规范等目录(不超过8项)

序 号	类别	知识产权(标准)具体名称及 证书编号(标准批准发布部门)	国家 (地区)	授权号(标准编号)及 授权(标准发布)日期	权利人 (标准起草单位)	发明人 (标准起草人)	法律 状态
7	发明 专利	一种油田伴生气脱氮设备以及工艺	中国	ZL201610758279.9	山东科瑞油气装备有限 公司	王玉军,吴洪波,郑富林, 孟巧玲,宋亮,王涛,刘平, 方绍杰,田琳	有效
8	发明 专利	CCUS system for exploiting thickened oil reservoir	欧洲	EP3564478B1	中国石油大学(华东)	Chao Zhang, Zhaomin Li, Jianlin Liu, Dongya Zhao, Teng Lu, Shouya Wu, Longjiang Guo	有效

代表性论文和专著目录(不超过8篇)

序号	论文/专著名称	刊名/出版社	期刊卷号/书号	发表时间	作者	通讯作者第一作者
1	Ionic liquid-decorated nanocages for cooperative CO2 transport in mixed matrix membranes	Separation and Purification Technology	239, 116539	2020-05	Siyuan Ding, Xueqin Li*, Sizuo Ding, Wanglong Zhang, Ruili Guo, Jinli Zhang*	Xueqin Li* Siyuan Ding
2	Mixed matrix membranes comprising dual-facilitated bio-inspired filler for enhancing CO ₂ separation	Separation and Purification Technology	276, 119347	2021-12	Xia Lv, Lu Huang, Siyuan Ding, Jiangnan Wang, Long Li, Chao Liang, Xueqin Li*	Xueqin Li* Xia Lv
3	Ultrathin Ni-Co nanosheets with disparate-CO ₂ -affinity nanodomains in membranes to improve gas separation	Separation and Purification	292, 121024	2022-07	Long Li, Lu Huang, Xia Lv, Jiangnan Wang, Xueqin Li*, Zhong Wei*	Xueqin Li* Long Li
4	超稠油水平井 CO ₂ 与降黏剂辅助蒸汽吞吐技术	石油勘探与开发	38, 600-605	2011-05	李兆敏, 鹿腾, 陶磊, 李宾飞, 张继国, 李敬	李兆敏* 李兆敏
5	Effect of flue gas and n-hexane on heavy oil properties in steam flooding process nanoparticles	Fuel	187, 84-93	2017-01	Songyan Li*, Zhaomin Li*,Xiaona Sun	Zhaomin Li* Songyan Li
6	Enhanced heavy oil recovery via surfactant-assisted CO2 huff-n-puff processes	Journal of Petroleum Science and Engineering	159, 25-34	2017-11	Binfei Li*, Qiliang Zhang, Songyan Li, Zhaomin Li	Binfei Li* Binfei Li
7	A novel strategy to reduce carbon emissions of heavy oil thermal recovery: Condensation heat transfer performance of flue gas assisted steam flooding	Applied Thermal Engineering	205, 118076	2022-03	Zhoujie Wang, Songyan Li*, Zhaomin Li	Songyan Li* Zhoujie Wang
8	气体辅助稠油高效开采理论与技术	中国石油大学出版社	978-7-5636-6341-	2018-12	李兆敏、李松岩	/